
We can create strings in python simply by enclosing characters in quotes. Python
treats single quotes the same as double quotes. Creating strings is as simple as
assigning a value to a variable. For example −

str1 = ‘Hello Python!'

str2 = "I love coding"

You can also write multi line strings by using triple quotes as follows.

str2 = """this is a long string that is made up of

several lines and non-printable characters such as

TAB (\t) and they will show up that way when it is displayed.

"""

Accessing Values in Strings

Unlike C or C++, python does not support a character type these are treated as strings
of length one.

To access substring of a string, we use the square brackets for slicing along with the
index or indices to obtain your substring. For example −

str1 = ‘Hello Python!'

str2 = "I love coding"

print("str1[0]: ", str1[0]) # str1[0]: H

print("str2[1:5]: ", str2[1:5]) # str2[1:5]: lov

Updating Strings

You can "update" an existing string by (re)assigning a variable to another string as
follows.

str1 = ‘Hello Python!'

str1 = "Hello coding!"

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is
unique to strings and makes up for the pack of having functions from C's printf()
family. Following is a simple example −

print "My name is %s and I am %d years old!" % ('Ellie', 25)

When the above code is executed, it produces the following result −

My name is Ellie and I am 25 years old!

Here is the list of complete set of symbols which can be used along with % −

Format Symbol Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

%u unsigned decimal integer

%o octal integer

Other supported symbols and functionality are listed in the following table −

Symbol Functionality

* argument specifies width or precision

- left justification

+ display the sign

#

add the octal leading zero ('0') or hexadecimal

leading '0x' or '0X', depending on whether 'x' or

'X' were used.

0 pad from left with zeros (instead of spaces)

% '%%' leaves you with a single literal '%'

m.n.
m is the minimum total width and n is the number of

digits to display after the decimal point (if appl.)

<sp> leave a blank space before a positive number

(var) mapping variable (dictionary arguments)

	Accessing Values in Strings
	Updating Strings
	String Formatting Operator

